On the Structure of Decision Diagram–Representable Mixed-Integer Programs with Application to Unit Commitment

نویسندگان

چکیده

Despite the successful applications of decision diagrams (DDs) to solve various classes integer programs in literature, question which mixed-integer structures admit a DD representation remains open. The present work addresses this by developing both necessary and sufficient conditions for program be DD-representable through identification certain rectangular formations underlying sets. This so-called rectangularization framework is applicable all bounded linear programs, providing notable extension domain continuous problems. As an application, paper uses developed methods stochastic unit commitment problems energy systems. Computational experiments conducted on benchmark instances show that approach uniformly significantly outperforms existing solution modern solvers. proposed methodology opens new pathways solving challenging systems more efficiently.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

the effects of changing roughness on the flow structure in the bends

flow in natural river bends is a complex and turbulent phenomenon which affects the scour and sedimentations and causes an irregular bed topography on the bed. for the reason, the flow hydralics and the parameters which affect the flow to be studied and understand. in this study the effect of bed and wall roughness using the software fluent discussed in a sharp 90-degree flume bend with 40.3cm ...

Reducing Mixed-Integer to Zero-One Programs

1. The 0-1 knapsack problem with a single continuous variable (KPC) is a natural extension of the binary knapsack problem (KP), where the capacity is not any longer fixed but can be extended which is expressed by a continuous variable. This variable might be unbounded or restricted by a lower or upper bound, respectively. This paper concerns techniques in order to reduce several variants of KPC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Operations Research

سال: 2022

ISSN: ['1526-5463', '0030-364X']

DOI: https://doi.org/10.1287/opre.2022.2353